The mathematical foundations of deep learning:
from rating impossibility to practical existence theorems

"Get ready to delve into the mind-bending intersection of mathematics and
artificial intelligence, where elegant equations and concepts lay the
foundation for the miraculous advancements in deep learning that are

transforming our world today."

Simone Brugiapaglia

http://simonebrugiapaglia.ca

March 30, 2023
Biomedical Imaging for Healthy Aging Lab Seminar, Concordia
G et s

f B


http://simonebrugiapaglia.ca

Acknowledgements

Collaborators

Concordia
Matthew Liu

Florida State University
Nick Dexter

Simon Fraser University
Ben Adcock

Sebastian Moraga

Paul Tupper

University of Texas at Austin
Clayton Webster

Funding

NSERC
CRSNG

ssssssssss

€ CENTRE
R DE RECHERCHES
M MATHEMATIQUES

Mathematical Sciences

’ ‘ Pacific Institute for the



Who is this quote from?

"Get ready to delve into the mind-bending intersection of mathematics and
artificial intelligence, where elegant equations and concepts lay the
foundation for the miraculous advancements in deep learning that are

transforming our world today."
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ChatGPT!

. Write a brief opening sentence for a seminar on the mathematical
foundations of deep learning. Make it exciting and mind bending

"Get ready to delve into the mind-bending intersection of mathematics and 9 G/
artificial intelligence, where elegant equations and concepts lay the
foundation for the miraculous advancements in deep learning that are

transforming our world today."

‘G Regenerate response

<

ChatGPT Jan 30 Version. Free Research Preview. Our goal is to make Al systems more natural and safe to interact with. Your feedback will
help us improve.

1/31



We live in an “Al golden age”

NUMBER of Al PUBLICATIONS by FIELD of STUDY (excluding Other Al), 2010-21

Source: Center for Security and Emerging Technology, 2021 | Chart: 2022 Al Index Report

51.69, Pattern Recognition
50

24.80, Computer Vision

20 //_\//
15.27, Data Mining
13.43, Natural Language Processing
10 9.70, Human~Computer Interaction

5.78, Linguistics

Number of Al Publications (in thousands)

2010 201 2012 2013 2014 2015 2016 2077 2018 2019 2020 2021
Figure 11.3

Source: 2022 Al Index Report (Stanford)
https://aiindex.stanford.edu/report/
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The impact of deep learning
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A pivotal role in the current Al revolution is played by deep learning.

Impactful applications include:
» AlphaGo project by DeepMind
Speech synthesis in Apple Siri

Speech recognition in the conversational engine of Amazon Alexa

| 2

| 2

» Netflix's recommender system

» Computer vision in Tesla's autopilot
>

Conversational engine ChatGPT
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https://www.deepmind.com/research/highlighted-research/alphago
https://machinelearning.apple.com/research/siri-voices
https://docs.aws.amazon.com/lex/latest/dg/what-is.html
https://netflixtechblog.com/distributed-neural-networks-with-gpus-in-the-aws-cloud-ccf71e82056b
https://www.tesla.com/autopilot

The other side of the coin...

ANALYSIS

ARTIFICIAL INTELLIGENCE

2021's Top Stories About AI Spoiler: A lot of them
talked about what's wrong with machine learning

today

BY ELIZA STRICKLAND
27 DEC 2021 |4 MIN AEAD

POLICY FORUM

MACHINE LEARNING
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Proving Existence Is Not Enough:
Mathematical Paradoxes Unravel the Limits
of Neural Networks in Artificial Intelligence

By Vegard Antun, Matthew J. Our i result revesls a seiou s esults about the feasble achievements of
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The need for mathematical foundations

[Smale, 1998]!

Problem 18: Limits of Intelligence

STEVE SMALE What are the limits of intelligence, both artificial and
. human?
Mathematical
Penrose (1991) attempts to show some limitations of ar-
Pro b | ems for the tificial intelligence. His argumentation brings in the inter-
1 esting question whether the Mandelbrot set is decidable
Next Centu ry (dealt with in [Blum and Smale, 1993]) and implications of

the Godel incompleteness theorem.

However, a broader study is called for, one which in-
volves deeper models of the brain, and of the computer,
in a search of what artificial and human intelligence have
in common, and how they differ. I would look in a di-

v I Armold, on behalf of the International Mathematical Union, has written to a e T, e, R e T
mumber of mathematicians with a suggestion that they describe some great
ory play a substantial role, together with the mathemat-
ics of real numbers, approximations, probability, and
geometry.
I hope to expand on these thoughts on another occa-
sion.

@ probiems for the next century. This report is my response.

LWritten in reply to a request from Vladimir Arnold, then vice-president of
the International Mathematical Union, who asked several mathematicians to
propose a list of problems for the 21st century, inspired by Hilbert’s list for the
20th century. 5/31



This talk

Our focus
» Understanding the potential and limitations of deep learning
through a rigorous mathematical approach
Two case studies

I. Rating impossibility theorems in identity effect classification

[l. Practical existence theorems in high-dimensional approximation
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Getting orientated amidst the DL literature “jungle

Articles

Any time
Since 2022
Since 2021
Since 2018
Custom range...

Sort by relevance
Sort by date

Introductory paper:

@it pospcty i s

Deep Learning: An Introduction
for Applied Mathematicians*

= Google Scholar

deep leaming

uits (0.03 sec)

mu Deep learning
¥ LeCun, Y Bengio, G Hinton - nature, 2015 - nature.com

Perhaps more surprisingly, deep learning has produced extremely promising results for various
. We think that deep learning will have many more successes in the near future because it ...
Yr Save 9 Cite Cited by 56724 Related articles ~All 82 versions

or1 Deep learning
D Learning - High-Dimensional Fuzzy Clustering, 2020 - icpme.us

- MLG is scientific advisor, co-founder, and equity holder in Quantitative lnsvgms [now
Alarity Imaninal malars Af (ant¥ _ tha firet ENA_rlasrad marhina
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Neural Networks

Ioumalhomopage: wwwasavercomoatanounet

Catherine F. Higham'

Desmond J. Higham? Review

Deep learning in neural networks: An overview
Jirgen Schmidhuber

iolds. At tho hoartofthis docp Jonening rvolution ao famila concepts from applied and
computational mathematics, notably fom cleulus, appracimation thecry, optimization,
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Gnderlie decp learsing o an spplied mathemalics perspoctiv. Our target andicnce
o ot th ro, Tho ey o wofl o euton i mathematcs who
e o o s it gions. What & & sl network? Tow 3 5
i i What b o st et et e st e s i
a short MATLAB code that sets up and trains o network. We albo demonstrat 1
ottt o g sl g o o, Wo B i
s 10 the curent ertuse

ey word. bk propsgatin, i e, comaltion, e clsiicaton, sl sk, ot

ting, Sgrmoid, stochasic radient method, supervised lencning

e i gt o, Whh ar i of ossly esble, vl Ik between sciont
nd .| eviw dcp Supeisd Jeaming (350 epIIARE the Aory of DcKYOpAESon),
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Deep neural networks (DNNs) in a nutshell

A (feedforward) Deep Neural Network (DNN) is a function approximator

oo 0 Aol) = o(Ailh) e Ap(hp) = (x)

) ——— ——
input =:h; hidden layer =:hy hidden layer output

where the activation is, e.g., 0(x) = ReLU(x) = max{x, 0} or
o(x) = tanh(x), and Ay are affine maps, i.e. Ax(x) = Wix + by.

[Image courtesy of Fahmi Nurfikri, towardsdatascience.com]

Architecture: Size of input, hidden, and output layers and choice of ¢.
Depth: Number of hidden layers, D.
Trainable parameters: Define © = (W, bk)E:o €RT. Then, ® = ®g
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Deep learning (DL) in a nutshell

Training: Given a dataset {(x;, y;)}™, minimize a (regularized) loss:

O carg min F((Po(x),y))™1)+A R(®) , A>0
OcRT ——

loss function regularizer
Examples:
m
> F((Po(xi), yi)itq) Z (e (%), yi), with
o — y|? (least squares)
tp.y) =
—ylog(¢) — (1 —y)log(l—¢) (cross entropy)

> R(©) = ||®||p, where p=1,2

Optimize via, e.g., Stochastic Gradient Descent (SGD):

» define (random) partition {1,..., m} =BylU...UBk_1 and
Gg,(®) = F((Po(xi),yi)ics;) + AR(O),

> compute @;41 = ©; —a;VeGp, ., (©)), with a; >0, and O
randomly initialized, until stopping criterion is met.
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|. Rating impossibility theorems



ldentity effects

Suppose you are told the following words are good:
AA GG LL MM

But that the following words are bad:
AG LM GL MA

Are the following words good or bad?

YY YZ

10/31



ldentity effects

Suppose you are told the following words are good:
AA GG LL MM
But that the following words are bad:
AG LM GL MA
Are the following words good or bad?
YY YZ

Identity effect: well formedness depends on two substructures being
identical.

Humans can easily generalize this type of task outside the training set
(which did not contain Y, nor Z).

Can machine learning algorithms do the same?

10/31



|dentity effects in cognitive science

Original motivation: linguistics [Benua, 1995; Gallagher, 2013].
» understanding whether a sentence is grammatical (syntax)

» or whether a word consisting of a string of phonemes is a possible
word of a language (phonology).

[Marcus, 1999] shows that 7-month-old infants can generalize this type of
rules, whereas neural networks cannot. This generated a heated debate.

Does generalization in Connectionism:

infant learning implicate  with or without rules?
abstract algebra-like Response to J.L. McClelland and D.C. Plaut
rules? (1999)

Gary E Marcus

James L. McClelland and David C. Plaut

See also: Boucher, V. (2020). Debate : Yoshua Bengio and Gary Marcus:
The best way forward for Al.
http://montrealartificialintelligence.com/aidebate/.

11/31


http://montrealartificialintelligence.com/aidebate/

Notation

X set of admissible inputs x

r rating (in R)
Example:
A (set of all two-letter words, AA, LM, YY, ...)
r € [0, 1] (probability of being identical pair)

D training data set
Example:
D = {(AA,1),(GG,1),(LL, 1), (AG,0), (LM, 0), (GL,0)}

L learner r = L(D, x)

Example: output of feedforward neural network trained with SGD
using D as the training set.
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Rating impossibility for invariant learners

Theorem (SB, Liu, Tupper, 2022)

Consider a data set D and a transformation T : X — X such that
(i) T(D) = D (invariance of the data).

Then, for any learner L and any input x € X such that

(i) L(t(D),t(x)) = L(D, x) (invariance of the learner),

we have

L(D,1(x)) = L(D, x).

13/31



Rating impossibility for invariant learners

Theorem (SB, Liu, Tupper, 2022)

Consider a data set D and a transformation T : X — X such that
(i) T(D) = D (invariance of the data).

Then, for any learner L and any input x € X such that

(i) L(t(D),t(x)) = L(D, x) (invariance of the learner),

we have

L(D,1(x)) = L(D, x).

Proof.

L(D,7(x)) = L(t(D), (x)) = L(D, x).

13/31



Invariance of the learner under SGD training

Setting: D = {(x;, 1)}, r = ®(V, Wx), with (V, W) trainable.
Theorem (SB, Liu, Tupper, 2022)

Let T: X — X be a linear transformation represented by an orthogonal
matrix T. Compute (Vi, W) via k iterations of SGD from randomly
initialized (Vo, Wo) and with the regularized loss

G(V, W) = F ((®(V, Wx), n)Zy) + A(R(V) + [|W|E),

with A > 0 and such that G is differentiable. Let Vi and Wy be
independent and Wo T 4 Wo (equidistributed). Then, the learner

E(D,X) = (I)(Vk, WkX)

is invariant to T in distribution (i.e., L(D, x) 4 L(t(D), t(x))).

Extensions: Adam, models r = ®(V, Wx, Wy) (e.g., recurrent NNs)
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Invariance of the data and the transformation T

T(£1Y) = flz,

Back to our initial example, define { 7(¢1Z) = (1Y,
T(flfz) = 4152, V@g % {Y,Z}.

> 7(D) = D (recall that (1Y, (1Z ¢ D).

> If we encode letters as {A, B, ..., 7} — {\/1}1221 C R?6, T is linear.

Encoding {vj}fgl Property of matrix T Invariance of L?

canonical basis (one-hot) permutation v
orthogonal basis orthogonal v
linearly independent invertible ?

So, if L is invariant to T, then £(D, T(x)) iK(D,X).
In particular, if x = YZ, then 7(x) =YY and L(D, YY) 4 L(D,YZ).

= The learner L is unable to generalize outside the training set.
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Numerical experiment: Two-letter words

Learners: (left to right) feedforward NN (depth = 1, 2, 3)
Encodings: (top to bottom) one-hot, orthogonal, distributed.

5000 epochs, 256 units, 1 layers

ALPHABET, One-Hot, FFNN, SGD
5000 epochs, 256 units, 2 layers

5000 epochs, 256 units, 3 layers

1 10 10
08 08 08
206 06 06!
Toa 04 041
02 02 021
00 00 00
A xy W oYz 2 zz EY sz A Xy W oYz ¥ 2z EY sz M Xy W oYz oz 2z EY sz
ALPHABET, Haar, FFNN, SGD
N 5000 epochs, 256 units, 1 layers 10 5000 epochs, 256 units, 2 layers 10 5000 epochs, 256 units, 3 layers
08 08 081
gos 06 06
Boa 04 04
02 02 02}
00 00 00
My W Yz 2z BY sz My W YZ Y 722 B sz MY W Yz 2z 2z BY sz
ALPHABET, Distributed, FFNN, SGD
10 5000 epochs, 256 units, 1 layers 10 5000 epochs, 256 units, 2 layers 10 5000 epochs, 256 units, 3 layers
08 08 08
206 06 06/
Boa 04 04
02 02 02
00 00 00

My W vz 2z B sz

My W YZ X 2z B sz

Bar 1-2: words in the training set.
Bar 3-8: words outside the training set (contain Y or Z).

My W YZ 2 2z EY sz
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Handwritten digits (MNIST): Setup

Task: Classify pairs of images corresponding to palindromic numbers.

i v Output €V Input
Rating | - gy | CV Model

Setup:
» Computer Vision (CV) model (trained on all digits)
» Identity Effect (IE) model (trained on digits from 0 to 7)

CV Model Loss Plot
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Handwritten digits (MNIST): Results

Learners: (left to right) IE feedforward NN (depth =1, 2, 3)
Encodings: (top to bottom) undertrained CV, overtrained CV

1000 epochs, 256 units, 1 layers

XX XY XX' XY 88 89 98 99 X8 X9

1000 epochs, 256 units, 1 layers

MNIST, jamais vu, 1 Epoch, FFNN, ADAM
1000 epochs, 256 units, 2 layers

1000 epochs, 256 units, 3 layers

005K X XX XY 88 89 98 99 X8 X9

MNIST, jamais vu, 12 Epoch, FFNN, ADAM
10 1000 epochs, 256 units, 2 layers

XX XY XX XY 88 89 98 99 X8 X9

XX XY XX XY 88 89 98 99 X8 X9

Bars 1-2: images in the training set
Bars 3-4: unseen images (but already seen digits)
Bars 6-10: digits outside the training set (contain 8 or 9)

XX XY XX' XY 88 89 98 99 X8 X9

1000 epochs, 256 units, 3 layers

XX XY XX XY 88 89 98 99 X'8 X9
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|l. Practical existence theorems



Motivation
We consider the problem of approximating a multivariate function

x+— f(x), xeR

from pointwise samples f(x1), ..., f(xm).

f typically arises from a parametric model describing a physical process

Parametric model
Parameters (e-g., parametric PDE) Quantity of interest
—

x Mlu]=0 T rw=au

(computing u = uy is expensive)

RALPH C. SMITH

Uncertainty Quanification

Key tasks: surrogate modelling, opid Aesep i
uncertainty quantification.

Applications: weather and climate,
epidemiology, subsurface hydrology, nuclear
reactor design, biological models, ...

Suggested reading
[Smith, 2014] 10/31



Orthogonal polynomials and sparse approximation

Let f: U — C, where Y = [—1, l}d, and
TV:T5?®"'®‘P1D

Vg !

where {¥1P},cn, are 1D orthogonal
polynomials on [—1,1] (e.g., Legendre). » e

{TV}veNg’ orthonormal basis of L2(U4). of / S S

For any f € L?(U) we have the expansion ST 0 e

f= E ¥y, Cv:/uf(X)TV(X)dX. /="~‘\\

veNg /
‘ W AHr4 |
Goal: Compute a sparse approximation \)\"_’)
900
~ A N N “ " L RXN]
fef= 2 &Yy, léllo=#{& #0} “small".  eee.
veING
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Smoothness = Exponential best s-term decay

The Bernstein ellipse &.

Assume that f is holomorphic (or analytic) in a Bernstein polyellipse
Ep, where £, = &5 x -+ X &, C CY,. Then, for s > 3,

f= L at| SUflise,) -e(=rs9). v=1(d.p).

n
lello<s d
VGNO 12

best s-term approx. error

This holds for a large class of parametric models: diffusion equation,
harmonic oscillator, heat equation, parametrized domain, ...

[Cohen, DeVore, Schwab, 2010-2011], [Chkifa, Cohen, Schwab, 2015], [Beck, Nobile, Tamellini,
Tempone, 2015], [Cohen, DeVore, 2015], [Tran, Webster, Zhang, 2017]
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Known vs. unknown anisotropy

Issue: Anisotropy of f, i.e., how smooth f is in each variable, might be
unknown (can be measured by p).

Sparse polynomial approximation methods:

Known anisotropy
» Interpolation via sparse grids [Zenger, 1991],[Bungartz, Griebel, 2004]
» Quadrature methods (approximate ¢, = [, f(x)¥y(x) dx)

» Least-squares approximation

min = Z Ip(yi) — f(yi)?

peSpan{¥y}ies M ;5

Unknown anisotropy

> Greedy (adaptive) methods

» Compressed sensing < | This talk
» Deep learning < | This talk

22/31



High-dimensional approximation via compressed sensing

> Consider a “large enough” ambient set A C INg, |A| = N and let

fA = Z CV‘YV
veEA

» Collect Monte Carlo (MC) samples, i.e. x1,...,xm € U i.i.d.
uniform samples, where m < V.

> Let A= (ﬁ‘?,,j(x;))mgl € C™N, b= (Jof(x))7y € C™.

» Obtain underdetermined linear system b = Aca + e, where

N ——

1

N m
= (ay)j= = —=(f(x) = fa(xi) + i i
CA (C‘VJ)Jfl’ e /*( (X) A(X) n )/ 1

. . more sources
coefficients of fp trugﬁ%trlon of error

> Let uy = ||'¥y| 1, solve the Square Root LASSO

¢carg min [|[Az—bl2+Allz|l1u, F= ) &Y.
zeCN vEA

[Doostan, Owhadi, 2011], [Mathelin, Gallivan, 2012], [Yang, Karniadakis, 2013], [Rauhut, Ward, 2016],
[Adcock, 2017], [Chkifa, Dexter, Tran, Webster, 2018], [Adcock, SB, Webster, 2018] 23/31



Convergence rates for compressed sensing

Theorem [Adcock, SB, Webster, 2022], [Adcock, SB, Dexter, Moraga, 2021]
Let f be holomorphic in &£, and set m = cm/ (log3(m) log(d)). Let

d
A= ATC 1-{v€N8:H(vk+1)§s}
k=1

be the hyperbolic cross index set of order s = [m!/2]. Then,

R _ 1
IF = Fll2 S 1 llioe,) - exp(—yt/ 9)) + ﬁH"IIz.

with high probability.

AHC

Key fact: _, contains all “lower sets” of cardinality s.
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If you want to know more...

BEN ADCOCK ¢ SIMONE BRUGIAPAGLIA  CLAYTON G. WEBSTER

Sparse Polynomial
Approximation of
. High-Dimensional

Computatignal=Science-and-Engineering..

http://sparse-hd-book.ca
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DNN Approximation Theory

Generalizations of universal approximation theorems proposed in the
80s by Chibenko, Hornik et al., show that DNNs can efficiently
approximate functions from a wide variety of classes:
P E.g. H¥ functions, piecewise smooth functions, bandlimited functions, Barron
functions, cartoon-like functions,...

Review paper [Elbrachter, Perekrestenko, Grohs, Bdlcskei, 2021]

For holomorphic functions there exist DNNs (of moderate size and

depth) that achieve the same error bounds as the best s-term polynomial
approximation. [Opschoor, Schwab, Zech, 2019], [Daws, Webster, 2020]

[Adcock, SB, Dexter, Moraga, 2021]

Key questions

1. Can DNNs with suitable approximation properties be obtained via
training? How much data do we need?

2. How does DNN-based approximation compare with polynomial
approximation via CS?

26/31



Practical existence theorem for DNNs

Theorem [Adcock, SB, Dexter, Moraga, 2021]

Let f be holomorphic in &, {x;}/; i.i.d. uniform samples from &/ and
define m := cm/ (log®(m) log(d)). Then, there exist

» a class of ReLU DNNs A whose depth, # of trainable parameters,
and # of nonzero parameters, are at most polynomial in m;

> a regularization functional R : N' — [0, 00) equal to a certain norm
of the trainable parameters

such that any minimizer

1/2
m
b € arg in. (,1, Y |9(x) - f(x,->|2) +AR(®),
i=1

satisfies the same exponential convergence rates in m as those for sparse
polynomial approximation via CS with high probability.

Extensions: Hilbert- and Banach-valued settings
[Adcock, SB, Dexter, Moraga, 2022].
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Numerics: parametric diffusion equation
[Adcock, SB, Dexter, Moraga, 2021]

Parametric PDE: d = 30 dimensional parametric diffusion equation on
Q =0, 1]2 with “layered” spatial dependence (based on benchmark from
[Nobile, Tempone, Webster, 2008]).

lI+lly = £2(€)-norm

[l = ll L3ae; 3 ))

100 200 300 400 500 600 700 100 200 300 400 500 600 700
m (uniform random samples) m (uniform random samples)

Take home: By careful tuning of the architecture, DNNs can achieve the
similar or better performance than CS.

28/31



Epilogue

» Inspired by Smale's 18th problem, we have illustrated how ideas
from geometry, approximation, probability, and optimization can
help provide new insights on the mathematical foundations of deep
learning.

» In particular, we have seen results that identify limitations and
potential of deep learning in different contexts: identity effect
classification and high-dimensional approximation.

» We have only scratched the surface, and much more work remains
to be donel

29/31



The roads not taken...

» Rating impossibility with noisy encodings
with Paul Glickman (Concordia)

» Rating impossibility for Graph Neural Networks (GNNs)
with Alessio D’Inverno (University of Siena & MILA) and Mirco Ravanelli
(Concordia & MILA)

» Numerical approximation of high-dimensional PDEs via compressed
sensing and deep learning
with Nick Dexter (FSU) and Weiqi Wang (Concordia)

» Analysis of compressive sensing with deep generative priors
with Aaron Berk (McGill), Babhru Joshi (UBC), Yaniv Plan (UBC),
Matthew Scott (UBC), and Ozgiir Yilmaz (UBC)

» Sparse recovery and deep algorithm unrolling
with Sina M.-Taheri (Concordia)
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Thank youl!

B. Adcock, SB, and C. Webster, Sparse Polynomial
R ol Approximation of High-dimensional Functions, SIAM,

Approximation of

High-Dimensional

Bencion: 2022
www.sparse-hd-book.ca

Papers

» SB, M. Liu, and P. Tupper, Invariance, encodings, and generalization:
learning identity effects with neural networks. Neural Computation, 34
(8), pp. 1756-1789, 2022

» B. Adcock, SB, N. Dexter, and S. Moraga, Deep neural networks are
effective at learning high-dimensional Hilbert-valued functions from
limited data, Proceedings of Machine Learning Research (PMLR),
MSML21 2021
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Backup slides



From function approximation to high-dimensional PDEs

Sparsity and Monte Carlo sampling can help solve PDEs on
high-dimensional domains, via compressive spectral Fourier

collocation. [SB, Wang, 2022]

» Under suitable sufficient conditions on diffusion coefficient the curse
of dimensionality can be lessened in the number of collocation
points. Theory is based on random sampling in Bounded Riesz
systems [SB, Dirksen, Jung, Rauhut, 2021]

» Practical existence theorems for DL-based high-dimensional PDE
solvers? (Physics Informed NNs [Lagaris, Likas, Fotiadis, 1998],
[Karniadakis et al., 2021])
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Compressed sensing and deep generative models

Compressed sensing can be used to recover signals in the range of a deep
generative model [Bora, Jalal, Price, Dimakis, 2017]

Goal: Recover x = G(z) € RN from m < N noisy linear measurements
y = Ax + e, where G : R — RV is a neural network of depth D.

In [Berk, SB, JOShi, Plan, SCOtt, Yilmaz, signal 10 15 20 25 50 100 200 250
2022] we provide the first recovery /s 2.2 /77777

guarantees for generative compressed /L0 8%2// )/
sensing with subsampled isometries based JE)RB2%) ) )
on a coherence parameter «. We prove that ’

Y4 &4 44444

947109899
4V b9 74 4Y

Sig  0.96 0.82

m > kDna?

Sig  0.96 0.82

measurements are sufficient for accurate

and stable recovery. Typical coherence Lower coherence leads
(random weights) is « = O(\/kD/n) to better recovery.
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Example: Parametric diffusion equation

Physical variables: z € Q = (0,1)?
Subdomains: Qx C Q) (circles) , @ C Q) (square)
Parameters: x € [—1,1]2

Parametric PDE: For any x € [—1, 1]8, find solution u(-, x) to

{vz (a(2x)Vau(z)) = 10(2), zEQ, @@0|
u(z,x) =0, z €0Q), X, @@
’

where a(z,x) =€+ Z ck(xk)1la,(z) > € > 0. X
k=1

Parametric solution map: x — u(-, x)

Quantities of interest:

f(x):/Qu(z,x)dz, F(x) = u(zo,x),
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Proof sketch (Practical existence theorem)
1. Define the class of DNNs
N={®:RY = R:®(x) =2z"®)5(x), zc R"}
where

» z are trainable parameters
» Dy 5= (Pys)ven is a ReLU network (with explicit depth and
width bounds) that approximates Legendre polynomials ¥y, s.t.
¥y — Dy s/l 12y < 6 [Opschoor, Schwab, Zech, 2019]
2. The DNN training program can be interpreted as a SR-LASSO
program. In particular,

¢ € arg min ||A'z— b2 + Al 2|1,
zeCN

where A" = (ﬁ@,,jy(g(x;)),-j ~ A, the CS matrix, if and only if

2~

& =T, 5(x),
is a minimizer to the training program.

3. Now, use tools from sparse high-dimensional polynomial

approximation via CS.
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