The mathematical foundations of deep learning: from rating impossibility to practical existence theorems

```
"Get ready to delve into the mind-bending intersection of mathematics and
artificial intelligence, where elegant equations and concepts lay the
foundation for the miraculous advancements in deep learning that are
transforming our world today."
```

Simone Brugiapaglia
http://simonebrugiapaglia.ca

Concordia

March 30, 2023
Biomedical Imaging for Healthy Aging Lab Seminar, Concordia

Acknowledgements

Collaborators
Concordia
Matthew Liu

Florida State University
Nick Dexter

Simon Fraser University
Ben Adcock
Sebastian Moraga
Paul Tupper
University of Texas at Austin Clayton Webster

Funding

Who is this quote from?

"Get ready to delve into the mind-bending intersection of mathematics and artificial intelligence, where elegant equations and concepts lay the foundation for the miraculous advancements in deep learning that are transforming our world today."

ChatGPT!

s Write a brief opening sentence for a seminar on the mathematical foundations of deep learning. Make it exciting and mind bending
artificial intelligence, where elegant equations and concepts lay the foundation for the miraculous advancements in deep learning that are transforming our world today."
G Regenerate response

We live in an "AI golden age"

NUMBER of AI PUBLICATIONS by FIELD of STUDY (excluding Other AI), 2010-21
Source: Center for Security and Emerging Technology, 2021| Chart: 2022 AI Index Report

Source: 2022 AI Index Report (Stanford) https://aiindex.stanford.edu/report/

The impact of deep learning

[(C) DeepMind]

[C Tesla]

A pivotal role in the current Al revolution is played by deep learning.

Impactful applications include:

- AlphaGo project by DeepMind
- Speech synthesis in Apple Siri
- Speech recognition in the conversational engine of Amazon Alexa
- Netflix's recommender system
- Computer vision in Tesla's autopilot
- Conversational engine ChatGPT

The other side of the coin...

ANALYSIS AATIFICIAL INTELLIGENCE
2021's Top Stories About AI Spoiler: A lot of them talked about what's wrong with machine learning today
by Eliza staickland
27 DEC 2021 | 4 MIN READ

POLICY FORUM

Adversarial attacks on medical machine learning

Emerging vulnerabilities demand new conversations

By Samuel G. Finlayson', John D. Bowers ${ }^{2}$, Joichi Ito ${ }^{\mathbf{x}}$, Jonathan L. Zittrain ${ }^{2}$, Andrew L. Beam', IsaacS. Kohane'ith public and academic attention increasingly focused on the new
machine learning into regulatory decisions by way of computational surrogate end Under the United States'health care model, ome of the most direct impacts of machinelearninz algorithms come in the context of
and across aw ing images, au Cutting edgy erally use opti
data manipula data manipula model, As a p ful adversarial accurate medi top figure pron of these attack commoditized the left, an ima which is corre what appears fact a carefully adversarial nc to have maxir

ARTIFICIAL-INTELLIGENCE RESEARCHERS ARE TRYING TOFIX THE FLAWS OF NEURAL NETWORKS.

Proving Existence Is Not Enough: Mathematical Paradoxes Unravel the Limits of Neural Networks in Artificial Intelligence

By Vegard Antun, Mathhew J.
Colbrook, and Anders C. Hansen $T_{\text {he impat of deep learning (DLL) neural }}^{\text {networks (NNS), , and afificial inteli }}$ gence (AD) oves the last docade has been profound. Advanoses in cornputer vision aed
natural language processing tave yebed natural language processing have yebled
smart spaakers in our homes, driving assis. tanos in our cars, and susomated deageoses in medicine. At has aloo mpidly eniered scientific computing. However, overwhelming
 that modern Al is often non-robust (unstable)
may generate hallucinstions, and can produce nonsensical cutpot with high levels of predic-

Our main result revels a serious issuc for centain probems, while stable and accu-
rate NNs may provably exis, mo training. algorithm can obeain them (see Figure 2, on page 4). As such, existence throrems on approximation qualities of NNs (e.g.
universal approximation) represent only the first step towards a complete understanding of modera A. Sametimes they esee prowide overly sible NN ahimes of pos-

The Limits of Al:
Smale's 18th Problem
The strong optimism 也hat
results about the feasible achievements of A similar and digital computers. Al is nocour program do the bourdaries of Al is necessary. Stepten Strak a already sug. gested such a program in the 18 ish problem 21st century: What are the limisis of A A? (II). Sre Mathematical Paratexen on puoc 4

The need for mathematical foundations

[Smale, 1998] ${ }^{1}$

Mathematical Problems for the Next Century'

vI. Arnold, on behalf of the International Mathematical Union, has written to a number of mathematicians with a suggestion that they describe some great
problems for the next century. This report is my response.
Amoles Lrvitation is inspired in part by Hilbert's list of 1900
(see, e.g., (Browder, 1976) and I have used that list to help
design this essay.
Ihave listed 19
Problem 1: The Riemann Hypothesis
Of he zenos of the Riemann zetafunction, defined by anafytic contiviuation from

1. Simple statement. Also preferably mathematically pre-
cise.
Personal acquaintance with the problem 1 have wot
Personal acquaintance with the problem. I have not
are fhase witich

Problem 18: Limits of Intelligence

What are the limits of intelligence, both artificial and human?

Penrose (1991) attempts to show some limitations of artificial intelligence. His argumentation brings in the interesting question whether the Mandelbrot set is decidable (dealt with in [Blum and Smale, 1993]) and implications of the Gödel incompleteness theorem.

However, a broader study is called for, one which involves deeper models of the brain, and of the computer, in a search of what artificial and human intelligence have in common, and how they differ. I would look in a direction where learning, problem-solving, and game theory play a substantial role, together with the mathematics of real numbers, approximations, probability, and geometry.

I hope to expand on these thoughts on another occasion.

[^0]
This talk

Our focus

- Understanding the potential and limitations of deep learning through a rigorous mathematical approach

Two case studies
I. Rating impossibility theorems in identity effect classification
II. Practical existence theorems in high-dimensional approximation

Getting orientated amidst the DL literature "jungle"

\equiv Google Scholar
deep learning

Any time
[HTML] Deep learning
Since 2022
Since 2021
Y LeCun, Y Bengio, G Hinton - nature, 2015 - nature.com

Since 2018
Perhaps more surprisingly, deep learning has produced extremely promising results for various

Custom range...

Sort by relevance
Sort by date
[PDF] Deep learning
D Learning - High-Dimensional Fuzzy Clustering, 2020 - icpme.us
.. MLG is scientific advisor, co-founder, and equity holder in Quantitative Insights, [now
hiorituminal

Introductory paper:

Deep Learning: An Introduction

 for Applied Mathematicians*Catherine F. Higham Desmond f. Higham ${ }^{\ddagger}$

Abstract. Multilayered artiactial neural networks are becoming a pervasive tool in a host of application fields At the heart of this deep learning reevolution are familiar concepts from applied and amputsitanal mathematics, natably Erom calculus, approximation theory, optimization, underlie deep learning from si spplied matbematioc perspective Our target audjence
 h hern about the arca. The article may ako be useful for iratructors in masthematios wh We focus on three fuadamental questions: What is a deep neural network? How is netwrek trinad? What is the stochastic gradient mesthod? Wh illustrute the idces with short MATLAB code that sets up and trains a network. We also demonstrate the usp
of state-of-the-art zeftware on a large acale imace clasification problema. We finist with If deceacoces to the current literaturc
Key words. back propagation, chain rule, convolution, image elessificasion, neural netaork, overfit ins, siempid, slochastic erradient mothod, supervied learning

History:

Deep neural networks (DNNs) in a nutshell

A (feedforward) Deep Neural Network (DNN) is a function approximator

$$
\underbrace{x}_{\text {input }} \mapsto \underbrace{\sigma\left(\mathcal{A}_{0}(x)\right)}_{=: h_{1} \text { hidden layer }} \mapsto \underbrace{\sigma\left(\mathcal{A}_{1}\left(h_{1}\right)\right)}_{=: h_{2} \text { hidden layer }} \mapsto \cdots \underbrace{\mathcal{A}_{D}\left(h_{D}\right)}_{\text {output }}=\Phi(x)
$$

where the activation is, e.g., $\sigma(x)=\operatorname{ReLU}(x)=\max \{x, 0\}$ or $\sigma(x)=\tanh (x)$, and \mathcal{A}_{k} are affine maps, i.e. $\mathcal{A}_{k}(x)=W_{k} x+b_{k}$.

[Image courtesy of Fahmi Nurfikri, towardsdatascience.com]
Architecture: Size of input, hidden, and output layers and choice of σ.
Depth: Number of hidden layers, D.
Trainable parameters: Define $\Theta=\left(W_{k}, b_{k}\right)_{k=0}^{D} \in \mathbb{R}^{T}$. Then, $\Phi=\Phi_{\Theta}$

Deep learning (DL) in a nutshell

Training: Given a dataset $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{m}$, minimize a (regularized) loss:

$$
\hat{\Theta} \in \arg \min _{\Theta \in \mathbb{R}^{T}} \underbrace{F\left(\left(\Phi_{\Theta}\left(x_{i}\right), y_{i}\right)_{i=1}^{m}\right)}_{\text {loss function }}+\lambda \underbrace{R(\Theta)}_{\text {regularizer }}, \quad \lambda \geq 0
$$

Examples:

- $F\left(\left(\Phi_{\Theta}\left(x_{i}\right), y_{i}\right)_{i=1}^{m}\right)=\sum_{i=1}^{m} \ell\left(\Phi_{\Theta}\left(x_{i}\right), y_{i}\right)$, with

$$
\ell(\phi, y)= \begin{cases}|\phi-y|^{2} & \text { (least squares) } \\ -y \log (\phi)-(1-y) \log (1-\phi) & \text { (cross entropy) }\end{cases}
$$

- $R(\Theta)=\|\Theta\|_{p}$, where $p=1,2$

Optimize via, e.g., Stochastic Gradient Descent (SGD):

- define (random) partition $\{1, \ldots, m\}=B_{0} \sqcup \ldots \sqcup B_{K-1}$ and $G_{B_{j}}(\Theta)=F\left(\left(\Phi_{\Theta}\left(x_{i}\right), y_{i}\right)_{i \in B_{j}}\right)+\lambda R(\Theta)$,
- compute $\Theta_{j+1}=\Theta_{j}-\alpha_{j} \nabla_{\Theta} G_{B_{j \bmod K}}\left(\Theta_{j}\right)$, with $\alpha_{j}>0$, and Θ_{0} randomly initialized, until stopping criterion is met.
I. Rating impossibility theorems

Identity effects

Suppose you are told the following words are good:
AA GG LL MM

But that the following words are bad:

AG LM GL MA

Are the following words good or bad?
YY YZ

Identity effects

Suppose you are told the following words are good:
AA GG LL MM

But that the following words are bad:
AG LM GL MA

Are the following words good or bad?
YY YZ

Identity effect: well formedness depends on two substructures being identical.

Humans can easily generalize this type of task outside the training set (which did not contain Y , nor Z).

Can machine learning algorithms do the same?

Identity effects in cognitive science

Original motivation: linguistics [Benua, 1995; Gallagher, 2013].

- understanding whether a sentence is grammatical (syntax)
- or whether a word consisting of a string of phonemes is a possible word of a language (phonology).
[Marcus, 1999] shows that 7-month-old infants can generalize this type of rules, whereas neural networks cannot. This generated a heated debate.

Does generalization in infant learning implicate abstract algebra-like rules?
 James L. McClelland and David C. Plaut

Connectionism: with or without rules?
 Response to J.L. McClelland and D.C. Plaut (1999)
 Gary F. Marcus

See also: Boucher, V. (2020). Debate : Yoshua Bengio and Gary Marcus: The best way forward for AI.
http://montrealartificialintelligence.com/aidebate/.

Notation

\mathcal{X} set of admissible inputs x
r rating (in \mathbb{R})

Example:

\mathcal{X} (set of all two-letter words, AA, LM, YY, ...)
$r \in[0,1]$ (probability of being identical pair)
\mathcal{D} training data set
Example:
$\mathcal{D}=\{(\mathrm{AA}, 1),(\mathrm{GG}, 1),(\mathrm{LL}, 1),(\mathrm{AG}, 0),(\mathrm{LM}, 0),(\mathrm{GL}, 0)\}$
\mathcal{L} learner $r=\mathcal{L}(\mathcal{D}, x)$
Example: output of feedforward neural network trained with SGD using \mathcal{D} as the training set.

Rating impossibility for invariant learners

Theorem (SB, Liu, Tupper, 2022)
Consider a data set \mathcal{D} and a transformation $\tau: \mathcal{X} \rightarrow \mathcal{X}$ such that
(i) $\tau(\mathcal{D})=\mathcal{D}$ (invariance of the data).

Then, for any learner \mathcal{L} and any input $x \in \mathcal{X}$ such that
(ii) $\mathcal{L}(\tau(\mathcal{D}), \tau(x))=\mathcal{L}(\mathcal{D}, x)$ (invariance of the learner),
we have

$$
\mathcal{L}(\mathcal{D}, \tau(x))=\mathcal{L}(\mathcal{D}, x)
$$

Rating impossibility for invariant learners

Theorem (SB, Liu, Tupper, 2022)
Consider a data set \mathcal{D} and a transformation $\tau: \mathcal{X} \rightarrow \mathcal{X}$ such that
(i) $\tau(\mathcal{D})=\mathcal{D}$ (invariance of the data).

Then, for any learner \mathcal{L} and any input $x \in \mathcal{X}$ such that
(ii) $\mathcal{L}(\tau(\mathcal{D}), \tau(x))=\mathcal{L}(\mathcal{D}, x)$ (invariance of the learner),
we have

$$
\mathcal{L}(\mathcal{D}, \tau(x))=\mathcal{L}(\mathcal{D}, x)
$$

Proof.

$$
\mathcal{L}(\mathcal{D}, \tau(x))=\mathcal{L}(\tau(\mathcal{D}), \tau(x))=\mathcal{L}(\mathcal{D}, x) .
$$

Invariance of the learner under SGD training

Setting: $\mathcal{D}=\left\{\left(x_{i}, r_{i}\right)\right\}_{i=1}^{m}, r=\Phi(V, W x)$, with (V, W) trainable.
Theorem (SB, Liu, Tupper, 2022)
Let $\tau: \mathcal{X} \rightarrow \mathcal{X}$ be a linear transformation represented by an orthogonal matrix T. Compute (V_{k}, W_{k}) via k iterations of SGD from randomly initialized (V_{0}, W_{0}) and with the regularized loss

$$
G(V, W)=F\left(\left(\Phi\left(V, W x_{i}\right), r_{i}\right)_{i=1}^{m}\right)+\lambda\left(R(V)+\|W\|_{F}^{2}\right),
$$

with $\lambda \geq 0$ and such that G is differentiable. Let V_{0} and W_{0} be independent and $W_{0} T \stackrel{d}{=} W_{0}$ (equidistributed). Then, the learner

$$
\mathcal{L}(\mathcal{D}, x)=\Phi\left(V_{k}, W_{k} x\right)
$$

is invariant to τ in distribution (i.e., $\mathcal{L}(\mathcal{D}, x) \stackrel{d}{=} \mathcal{L}(\tau(\mathcal{D}), \tau(x))$).
Extensions: Adam, models $r=\Phi(V, W x, W y)$ (e.g., recurrent NNs)

Invariance of the data and the transformation τ

Back to our initial example, define $\left\{\begin{array}{l}\tau\left(\ell_{1} \mathrm{Y}\right)=\ell_{1} \mathrm{Z}, \\ \tau\left(\ell_{1} \mathrm{Z}\right)=\ell_{1} \mathrm{Y}, \\ \tau\left(\ell_{1} \ell_{2}\right)=\ell_{1} \ell_{2}, \quad \forall \ell_{2} \notin\{\mathrm{Y}, \mathrm{Z}\} .\end{array}\right.$

- $\tau(\mathcal{D})=\mathcal{D}$ (recall that $\ell_{1} \mathrm{Y}, \ell_{1} \mathrm{Z} \notin \mathcal{D}$).
- If we encode letters as $\{\mathrm{A}, \mathrm{B}, \ldots, \mathrm{Z}\} \rightarrow\left\{v_{j}\right\}_{j=1}^{26} \subset \mathbb{R}^{26}, \tau$ is linear.

Encoding $\left\{v_{j}\right\}_{j=1}^{26}$	Property of matrix T	Invariance of \mathcal{L} ?
canonical basis (one-hot)	permutation	\checkmark
orthogonal basis	orthogonal	\checkmark
linearly independent	invertible	$?$

So, if \mathcal{L} is invariant to τ, then $\mathcal{L}(\mathcal{D}, \tau(x)) \stackrel{d}{=} \mathcal{L}(\mathcal{D}, x)$.
In particular, if $x=Y Z$, then $\tau(x)=Y Y$ and $\mathcal{L}(\mathcal{D}, Y Y) \stackrel{d}{=} \mathcal{L}(\mathcal{D}, Y Z)$.
\Rightarrow The learner \mathcal{L} is unable to generalize outside the training set.

Numerical experiment: Two-letter words

Learners: (left to right) feedforward NN (depth $=1,2,3$)
Encodings: (top to bottom) one-hot, orthogonal, distributed.

Bar 1-2: words in the training set.
Bar 3-8: words outside the training set (contain Y or Z).

Handwritten digits (MNIST): Setup

Task: Classify pairs of images corresponding to palindromic numbers.

Setup:

- Computer Vision (CV) model (trained on all digits)
- Identity Effect (IE) model (trained on digits from 0 to 7)

Handwritten digits (MNIST): Results

Learners: (left to right) IE feedforward NN (depth $=1,2,3$) Encodings: (top to bottom) undertrained CV, overtrained CV

Bars 1-2: images in the training set
Bars 3-4: unseen images (but already seen digits)
Bars 6-10: digits outside the training set (contain 8 or 9)
II. Practical existence theorems

Motivation

We consider the problem of approximating a multivariate function

$$
x \mapsto f(x), \quad x \in \mathbb{R}^{d},
$$

from pointwise samples $f\left(x_{1}\right), \ldots, f\left(x_{m}\right)$.
f typically arises from a parametric model describing a physical process

Key tasks: surrogate modelling, uncertainty quantification.

Applications: weather and climate, epidemiology, subsurface hydrology, nuclear reactor design, biological models, ...

Suggested reading [Smith, 2014]

Orthogonal polynomials and sparse approximation

Let $f: \mathcal{U} \rightarrow \mathbb{C}$, where $\mathcal{U}=[-1,1]^{d}$, and

$$
\Psi_{v}=\Psi_{v_{1}}^{1 D} \otimes \cdots \otimes \Psi_{v_{d}}^{1 D}
$$

where $\left\{\Psi_{v}^{1 D}\right\}_{v \in \mathbb{N}_{0}}$ are 1D orthogonal polynomials on $[-1,1]$ (e.g., Legendre).
$\left\{\Psi_{\nu}\right\}_{\nu \in \mathbb{N}_{\mathrm{o}}^{d}}$ orthonormal basis of $L^{2}(\mathcal{U})$.
For any $f \in L^{2}(\mathcal{U})$ we have the expansion

$$
f=\sum_{v \in \mathbb{N}_{0}^{d}} c_{\nu} \Psi_{v}, \quad c_{v}=\int_{\mathcal{U}} f(x) \Psi_{v}(x) \mathrm{d} x .
$$

Goal: Compute a sparse approximation
$f \approx \hat{f}=\sum_{\nu \in \mathbb{N}_{0}^{d}} \hat{c}_{\nu} \Psi_{\nu}, \quad\|\hat{c}\|_{0}=\#\left\{\hat{c}_{\nu} \neq 0\right\}$ "small".

Smoothness \Rightarrow Exponential best s-term decay

The Bernstein ellipse $\mathcal{E} \rho$.
Assume that f is holomorphic (or analytic) in a Bernstein polyellipse \mathcal{E}_{ρ}, where $\mathcal{E}_{\rho}=\mathcal{E}_{\rho_{1}} \times \cdots \times \mathcal{E}_{\rho_{d}} \subset \mathbb{C}^{d}$,. Then, for $s \geq \bar{s}$,

$$
\underbrace{\inf _{\|\hat{c}\|_{0} \leq s}\left\|f-\sum_{v \in \mathbb{N}_{o}^{d}} \hat{c}_{\nu} \Psi_{v}\right\|_{L^{2}}}_{\text {best } s \text {-term approx. error }} \lesssim\|f\|_{L^{\infty}\left(\mathcal{E}_{\rho}\right)} \cdot \exp \left(-\gamma s^{1 / d}\right), \quad \gamma=\gamma(d, \boldsymbol{\rho}) .
$$

This holds for a large class of parametric models: diffusion equation, harmonic oscillator, heat equation, parametrized domain, ...
[Cohen, DeVore, Schwab, 2010-2011], [Chkifa, Cohen, Schwab, 2015], [Beck, Nobile, Tamellini, Tempone, 2015], [Cohen, DeVore, 2015], [Tran, Webster, Zhang, 2017]

Known vs. unknown anisotropy

Issue: Anisotropy of f, i.e., how smooth f is in each variable, might be unknown (can be measured by ρ).

Sparse polynomial approximation methods:
Known anisotropy

- Interpolation via sparse grids [Zenger, 1991],[Bungartz, Griebel, 2004]
- Quadrature methods (approximate $c_{v}=\int_{\mathcal{U}} f(x) \Psi_{v}(x) \mathrm{d} x$)
- Least-squares approximation

$$
\min _{p \in \operatorname{Span}\left\{\Psi_{\nu}\right\}_{v \in S}} \frac{1}{m} \sum_{i=1}^{m}\left|p\left(\boldsymbol{y}_{i}\right)-f\left(\boldsymbol{y}_{i}\right)\right|^{2}
$$

Unknown anisotropy

- Greedy (adaptive) methods
- Compressed sensing \leftarrow This talk
- Deep learning \leftarrow This talk

High-dimensional approximation via compressed sensing

- Consider a "large enough" ambient set $\Lambda \subset \mathbb{N}_{0}^{d},|\Lambda|=N$ and let

$$
f_{\Lambda}=\sum_{v \in \Lambda} c_{v} \Psi_{v}
$$

- Collect Monte Carlo (MC) samples, i.e. $x_{1}, \ldots, x_{m} \in \mathcal{U}$ i.i.d. uniform samples, where $m \ll N$.
- Let $A=\left(\frac{1}{\sqrt{m}} \Psi_{v_{j}}\left(x_{i}\right)\right)_{i, j=1}^{m, N} \in \mathbb{C}^{m \times N}, b=\left(\frac{1}{\sqrt{m}} f\left(x_{i}\right)\right)_{i=1}^{m} \in \mathbb{C}^{m}$.
- Obtain underdetermined linear system $b=A c_{\Lambda}+e$, where

$$
\underbrace{c_{\Lambda}=\left(c_{v_{j}}\right)_{j=1}^{N}}_{\text {coefficients of } f_{\Lambda}}, \quad e=\frac{1}{\sqrt{m}}(\underbrace{f\left(x_{i}\right)-f_{\Lambda}\left(x_{i}\right)}_{\begin{array}{c}
\text { truncation } \\
\text { error }
\end{array}}+\underbrace{n_{i}}_{\begin{array}{c}
\text { more sources } \\
\text { of error }
\end{array}})_{i=1}^{m}
$$

- Let $u_{v}=\left\|\Psi_{v}\right\|_{L^{\infty}}$, solve the Square Root LASSO

$$
\hat{c} \in \arg \min _{z \in \mathbb{C}^{N}}\|A z-b\|_{2}+\lambda\|z\|_{1, u}, \quad \hat{f}=\sum_{v \in \Lambda} \hat{c}_{\nu} \Psi_{v}
$$

[Doostan, Owhadi, 2011], [Mathelin, Gallivan, 2012], [Yang, Karniadakis, 2013], [Rauhut, Ward, 2016],
[Adcock, 2017], [Chkifa, Dexter, Tran, Webster, 2018], [Adcock, SB, Webster, 2018]

Convergence rates for compressed sensing

Theorem [Adcock, SB, Webster, 2022], [Adcock, SB, Dexter, Moraga, 2021] Let f be holomorphic in \mathcal{E}_{ρ} and set $\widetilde{m}=c m /\left(\log ^{3}(m) \log (d)\right)$. Let

$$
\Lambda:=\Lambda_{d, s-1}^{\mathrm{HC}}=\left\{v \in \mathbb{N}_{0}^{d}: \prod_{k=1}^{d}\left(v_{k}+1\right) \leq s\right\}
$$

be the hyperbolic cross index set of order $s=\left\lceil\widetilde{m}^{1 / 2}\right\rceil$. Then,

$$
\|f-\hat{f}\|_{L^{2}} \lesssim\|f\|_{L^{\infty}\left(\mathcal{E}_{\rho}\right)} \cdot \exp \left(-\gamma \widetilde{m}^{1 /(2 d)}\right)+\frac{1}{\sqrt{m}}\|n\|_{2}
$$

with high probability.

Key fact: $\Lambda_{d, s-1}^{\mathrm{HC}}$ contains all "lower sets" of cardinality s.

If you want to know more...

Sparse Polynomial Approximation of High-Dimensional Functions

http://sparse-hd-book.ca

DNN Approximation Theory

Generalizations of universal approximation theorems proposed in the 80s by Chibenko, Hornik et al., show that DNNs can efficiently approximate functions from a wide variety of classes:

- E.g. H^{k} functions, piecewise smooth functions, bandlimited functions, Barron functions, cartoon-like functions,...
Review paper [Elbrächter, Perekrestenko, Grohs, Bölcskei, 2021]
For holomorphic functions there exist DNNs (of moderate size and depth) that achieve the same error bounds as the best s-term polynomial approximation. [Opschoor, Schwab, Zech, 2019], [Daws, Webster, 2020]
[Adcock, SB, Dexter, Moraga, 2021]

Key questions

1. Can DNNs with suitable approximation properties be obtained via training? How much data do we need?
2. How does DNN-based approximation compare with polynomial approximation via CS?

Practical existence theorem for DNNs

Theorem [Adcock, SB, Dexter, Moraga, 2021]
Let f be holomorphic in $\mathcal{E}_{\rho},\left\{x_{i}\right\}_{i=1}^{m}$ i.i.d. uniform samples from \mathcal{U} and define $\widetilde{m}:=c m /\left(\log ^{3}(m) \log (d)\right)$. Then, there exist

- a class of ReLU DNNs \mathcal{N} whose depth, \# of trainable parameters, and \# of nonzero parameters, are at most polynomial in \widetilde{m};
- a regularization functional $\mathcal{R}: \mathcal{N} \rightarrow[0, \infty)$ equal to a certain norm of the trainable parameters
such that any minimizer

$$
\hat{\Phi} \in \arg \min _{\Phi \in \mathcal{N}}\left(\frac{1}{m} \sum_{i=1}^{m}\left|\Phi\left(x_{i}\right)-f\left(x_{i}\right)\right|^{2}\right)^{1 / 2}+\lambda \mathcal{R}(\Phi)
$$

satisfies the same exponential convergence rates in \widetilde{m} as those for sparse polynomial approximation via CS with high probability.

Extensions: Hilbert- and Banach-valued settings
[Adcock, SB, Dexter, Moraga, 2022].

Numerics: parametric diffusion equation

[Adcock, SB, Dexter, Moraga, 2021]
Parametric PDE: $d=30$ dimensional parametric diffusion equation on $\Omega=[0,1]^{2}$ with "layered" spatial dependence (based on benchmark from [Nobile, Tempone, Webster, 2008]).

Take home: By careful tuning of the architecture, DNNs can achieve the similar or better performance than CS.

Epilogue

- Inspired by Smale's 18th problem, we have illustrated how ideas from geometry, approximation, probability, and optimization can help provide new insights on the mathematical foundations of deep learning.
- In particular, we have seen results that identify limitations and potential of deep learning in different contexts: identity effect classification and high-dimensional approximation.
- We have only scratched the surface, and much more work remains to be done!

The roads not taken...

- Rating impossibility with noisy encodings with Paul Glickman (Concordia)
- Rating impossibility for Graph Neural Networks (GNNs) with Alessio D'Inverno (University of Siena \& MILA) and Mirco Ravanelli (Concordia \& MILA)
- Numerical approximation of high-dimensional PDEs via compressed sensing and deep learning with Nick Dexter (FSU) and Weiqi Wang (Concordia)
- Analysis of compressive sensing with deep generative priors with Aaron Berk (McGill), Babhru Joshi (UBC), Yaniv Plan (UBC), Matthew Scott (UBC), and Özgür Yilmaz (UBC)
- Sparse recovery and deep algorithm unrolling with Sina M.-Taheri (Concordia)

Thank you!

Book

Sparse Polynomial Approximation of High-Dimensional Functions
B. Adcock, SB, and C. Webster, Sparse Polynomial Approximation of High-dimensional Functions, SIAM, 2022
www.sparse-hd-book.ca

Papers

- SB, M. Liu, and P. Tupper, Invariance, encodings, and generalization: learning identity effects with neural networks. Neural Computation, 34 (8), pp. 1756-1789, 2022
- B. Adcock, SB, N. Dexter, and S. Moraga, Deep neural networks are effective at learning high-dimensional Hilbert-valued functions from limited data, Proceedings of Machine Learning Research (PMLR), MSML21 2021

Backup slides

From function approximation to high-dimensional PDEs

Sparsity and Monte Carlo sampling can help solve PDEs on high-dimensional domains, via compressive spectral Fourier collocation. [SB, Wang, 2022]

- Under suitable sufficient conditions on diffusion coefficient the curse of dimensionality can be lessened in the number of collocation points. Theory is based on random sampling in Bounded Riesz systems [SB, Dirksen, Jung, Rauhut, 2021]
- Practical existence theorems for DL-based high-dimensional PDE solvers? (Physics Informed NNs [Lagaris, Likas, Fotiadis, 1998], [Karniadakis et al., 2021])

Compressed sensing and deep generative models

Compressed sensing can be used to recover signals in the range of a deep generative model［Bora，Jalal，Price，Dimakis，2017］

Goal：Recover $x=G(z) \in \mathbb{R}^{N}$ from $m \ll N$ noisy linear measurements $y=A x+e$ ，where $G: \mathbb{R}^{k} \rightarrow \mathbb{R}^{N}$ is a neural network of depth D ．

In［Berk，SB，Joshi，Plan，Scott，Yilmaz， 2022］we provide the first recovery guarantees for generative compressed sensing with subsampled isometries based on a coherence parameter α ．We prove that

$$
m \gtrsim k D n \alpha^{2}
$$

measurements are sufficient for accurate and stable recovery．Typical coherence （random weights）is $\alpha=O(\sqrt{k D / n})$

$\begin{aligned} & \text { ะ } 152111 / 1 / \\ & 1605 \leq 1 / 1 \end{aligned}$
446444444
4041095

Lower coherence leads to better recovery．

Example: Parametric diffusion equation

Physical variables: $z \in \Omega=(0,1)^{2}$
Subdomains: $\Omega_{k} \subset \Omega$ (circles), $Q \subset \Omega$ (square)
Parameters: $x \in[-1,1]^{8}$
Parametric PDE: For any $x \in[-1,1]^{8}$, find solution $u(\cdot, x)$ to

$$
\begin{cases}-\nabla_{\boldsymbol{z}} \cdot\left(a(\boldsymbol{z}, x) \nabla_{\boldsymbol{z}} u(\boldsymbol{z}, x)\right)=1_{Q}(\mathbf{z}), & \boldsymbol{z} \in \Omega \\ u(\boldsymbol{z}, x)=0, & \boldsymbol{z} \in \partial \Omega\end{cases}
$$

where $a(z, x)=\epsilon+\sum_{k=1}^{d} c_{k}\left(x_{k}\right) 1_{\Omega_{k}}(\boldsymbol{z}) \geq \epsilon>0$.

Parametric solution map: $x \mapsto u(\cdot, x)$
Quantities of interest:

$$
f(x)=\int_{\Omega} u(z, x) \mathrm{d} z, \quad f(x)=u\left(z_{0}, x\right), \quad \ldots
$$

Proof sketch (Practical existence theorem)

1. Define the class of DNNs

$$
\mathcal{N}=\left\{\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}: \Phi(x)=z^{\top} \Phi_{\Lambda, \delta}(x), z \in \mathbb{R}^{N}\right\}
$$

where

- z are trainable parameters
- $\Phi_{\Lambda, \delta}=\left(\Phi_{v, \delta}\right)_{v \in \Lambda}$ is a ReLU network (with explicit depth and width bounds) that approximates Legendre polynomials Ψ_{ν} s.t. $\left\|\Psi_{v}-\Phi_{v, \delta}\right\|_{L^{\infty}(\mathcal{U})} \leq \delta$ [Opschoor, Schwab, Zech, 2019]

2. The DNN training program can be interpreted as a SR-LASSO program. In particular,

$$
\hat{c} \in \arg \min _{z \in \mathbb{C}^{N}}\left\|A^{\prime} z-b\right\|_{2}+\lambda\|z\|_{1}
$$

where $A^{\prime}=\left(\frac{1}{\sqrt{m}} \Phi_{v_{j}, \delta}\left(x_{i}\right)\right)_{i j} \approx A$, the CS matrix, if and only if

$$
\hat{\Phi}=\hat{c}^{T} \Phi_{\Lambda, \delta}(x),
$$

is a minimizer to the training program.
3. Now, use tools from sparse high-dimensional polynomial approximation via CS.

[^0]: ${ }^{1}$ Written in reply to a request from Vladimir Arnold, then vice-president of the International Mathematical Union, who asked several mathematicians to propose a list of problems for the 21st century, inspired by Hilbert's list for the 20th century.

