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Who is this quote from?
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ChatGPT!
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We live in an “AI golden age”

Source: 2022 AI Index Report (Stanford)
https://aiindex.stanford.edu/report/
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The impact of deep learning

[© MIT-IBM Watson AI Lab] [© DeepMind] [© Tesla]

A pivotal role in the current AI revolution is played by deep learning.

Impactful applications include:

I AlphaGo project by DeepMind

I Speech synthesis in Apple Siri

I Speech recognition in the conversational engine of Amazon Alexa

I Netflix’s recommender system

I Computer vision in Tesla’s autopilot

I Conversational engine ChatGPT

https://www.deepmind.com/research/highlighted-research/alphago
https://machinelearning.apple.com/research/siri-voices
https://docs.aws.amazon.com/lex/latest/dg/what-is.html
https://netflixtechblog.com/distributed-neural-networks-with-gpus-in-the-aws-cloud-ccf71e82056b
https://www.tesla.com/autopilot
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The other side of the coin...
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The need for mathematical foundations

[Smale, 1998]1

1Written in reply to a request from Vladimir Arnold, then vice-president of
the International Mathematical Union, who asked several mathematicians to
propose a list of problems for the 21st century, inspired by Hilbert’s list for the
20th century.
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This talk

Our focus

I Understanding the potential and limitations of deep learning
through a rigorous mathematical approach

Two case studies

I. Rating impossibility theorems in identity effect classification

II. Practical existence theorems in high-dimensional approximation
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Getting orientated amidst the DL literature “jungle”

Introductory paper: History:
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Deep neural networks (DNNs) in a nutshell

A (feedforward) Deep Neural Network (DNN) is a function approximator

x︸︷︷︸
input

7→ σ(A0(x))︸ ︷︷ ︸
=:h1 hidden layer

7→ σ(A1(h1))︸ ︷︷ ︸
=:h2 hidden layer

7→ · · · 7→ AD(hD)︸ ︷︷ ︸
output

= Φ(x)

where the activation is, e.g., σ(x) = ReLU(x) = max{x , 0} or
σ(x) = tanh(x), and Ak are affine maps, i.e. Ak (x) = Wkx + bk .

[Image courtesy of Fahmi Nurfikri, towardsdatascience.com]

Architecture: Size of input, hidden, and output layers and choice of σ.

Depth: Number of hidden layers, D.

Trainable parameters: Define Θ = (Wk , bk )
D
k=0 ∈ RT . Then, Φ = ΦΘ
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Deep learning (DL) in a nutshell
Training: Given a dataset {(xi , yi )}mi=1, minimize a (regularized) loss:

Θ̂ ∈ arg min
Θ∈RT

F ((ΦΘ(xi ), yi )
m
i=1)︸ ︷︷ ︸

loss function

+λ R(Θ)︸ ︷︷ ︸
regularizer

, λ ≥ 0

Examples:

I F ((ΦΘ(xi ), yi )
m
i=1) =

m

∑
i=1

`(ΦΘ(xi ), yi ), with

`(φ, y) =

{
|φ− y |2 (least squares)
−y log(φ)− (1− y) log(1− φ) (cross entropy)

I R(Θ) = ‖Θ‖p , where p = 1, 2

Optimize via, e.g., Stochastic Gradient Descent (SGD):
I define (random) partition {1, . . . ,m} = B0 t . . . t BK−1 and

GBj
(Θ) = F ((ΦΘ(xi ), yi )i∈Bj

) + λR(Θ),

I compute Θj+1 = Θj − αj∇ΘGBj mod K
(Θj ), with αj > 0, and Θ0

randomly initialized, until stopping criterion is met.
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I. Rating impossibility theorems
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Identity effects

Suppose you are told the following words are good:

AA GG LL MM

But that the following words are bad:

AG LM GL MA

Are the following words good or bad?

YY YZ

Identity effect: well formedness depends on two substructures being
identical.

Humans can easily generalize this type of task outside the training set
(which did not contain Y, nor Z).

Can machine learning algorithms do the same?
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Identity effects in cognitive science

Original motivation: linguistics [Benua, 1995; Gallagher, 2013].

I understanding whether a sentence is grammatical (syntax)

I or whether a word consisting of a string of phonemes is a possible
word of a language (phonology).

[Marcus, 1999] shows that 7-month-old infants can generalize this type of
rules, whereas neural networks cannot. This generated a heated debate.

See also: Boucher, V. (2020). Debate : Yoshua Bengio and Gary Marcus:
The best way forward for AI.
http://montrealartificialintelligence.com/aidebate/.

http://montrealartificialintelligence.com/aidebate/
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Notation

X set of admissible inputs x

r rating (in R)
Example:
X (set of all two-letter words, AA, LM, YY, ...)
r ∈ [0, 1] (probability of being identical pair)

D training data set
Example:
D = {(AA, 1), (GG, 1), (LL, 1), (AG, 0), (LM, 0), (GL, 0)}

L learner r = L(D, x)
Example: output of feedforward neural network trained with SGD
using D as the training set.
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Rating impossibility for invariant learners

Theorem (SB, Liu, Tupper, 2022)

Consider a data set D and a transformation τ : X → X such that

(i) τ(D) = D (invariance of the data).

Then, for any learner L and any input x ∈ X such that

(ii) L(τ(D), τ(x)) = L(D, x) (invariance of the learner),

we have
L(D, τ(x)) = L(D, x).

Proof.

L(D, τ(x)) = L(τ(D), τ(x)) = L(D, x).
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Invariance of the learner under SGD training

Setting: D = {(xi , ri )}mi=1, r = Φ(V ,Wx), with (V ,W ) trainable.

Theorem (SB, Liu, Tupper, 2022)

Let τ : X → X be a linear transformation represented by an orthogonal
matrix T . Compute (Vk ,Wk ) via k iterations of SGD from randomly
initialized (V0,W0) and with the regularized loss

G (V ,W ) = F ((Φ(V ,Wxi ), ri )
m
i=1) + λ(R(V ) + ‖W ‖2F ),

with λ ≥ 0 and such that G is differentiable. Let V0 and W0 be
independent and W0T

d
=W0 (equidistributed).Then, the learner

L(D, x) = Φ(Vk ,Wkx)

is invariant to τ in distribution (i.e., L(D, x) d
=L(τ(D), τ(x))).

Extensions: Adam, models r = Φ(V ,Wx ,Wy) (e.g., recurrent NNs)
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Invariance of the data and the transformation τ

Back to our initial example, define


τ(`1Y) = `1Z,
τ(`1Z) = `1Y,
τ(`1`2) = `1`2, ∀`2 /∈ {Y,Z}.

I τ(D) = D (recall that `1Y, `1Z /∈ D).
I If we encode letters as {A,B, . . . ,Z} → {vj}26j=1 ⊂ R26, τ is linear.

Encoding {vj}26j=1 Property of matrix T Invariance of L?
canonical basis (one-hot) permutation X
orthogonal basis orthogonal X
linearly independent invertible ?

So, if L is invariant to τ, then L(D, τ(x))
d
=L(D, x).

In particular, if x = YZ, then τ(x) = YY and L(D,YY) d
=L(D,YZ).

⇒ The learner L is unable to generalize outside the training set.
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Numerical experiment: Two-letter words
Learners: (left to right) feedforward NN (depth = 1, 2, 3)
Encodings: (top to bottom) one-hot, orthogonal, distributed.

Bar 1-2: words in the training set.
Bar 3-8: words outside the training set (contain Y or Z).
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Handwritten digits (MNIST): Setup
Task: Classify pairs of images corresponding to palindromic numbers.

Setup:

I Computer Vision (CV) model (trained on all digits)

I Identity Effect (IE) model (trained on digits from 0 to 7)
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Handwritten digits (MNIST): Results

Learners: (left to right) IE feedforward NN (depth = 1, 2, 3)
Encodings: (top to bottom) undertrained CV, overtrained CV

Bars 1-2: images in the training set
Bars 3-4: unseen images (but already seen digits)
Bars 6-10: digits outside the training set (contain 8 or 9)
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II. Practical existence theorems
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Motivation
We consider the problem of approximating a multivariate function

x 7→ f (x), x ∈ Rd ,

from pointwise samples f (x1), . . . , f (xm).

f typically arises from a parametric model describing a physical process

Parameters
x

→
Parametric model

(e.g., parametric PDE)

Mx [u]=0

(computing u = ux is expensive)

→ Quantity of interest

f (x)=Q[u]

Key tasks: surrogate modelling,
uncertainty quantification.

Applications: weather and climate,
epidemiology, subsurface hydrology, nuclear
reactor design, biological models, ...

Suggested reading
[Smith, 2014]
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Orthogonal polynomials and sparse approximation

Let f : U → C, where U = [−1, 1]d , and
Ψν = Ψ1D

ν1 ⊗ · · · ⊗Ψ1D
νd

,

where {Ψ1D
ν }ν∈N0 are 1D orthogonal

polynomials on [−1, 1] (e.g., Legendre).

{Ψν}ν∈Nd
0
orthonormal basis of L2(U ).

For any f ∈ L2(U ) we have the expansion

f = ∑
ν∈Nd

0

cνΨν, cν =
∫
U
f (x)Ψν(x) dx .

Goal: Compute a sparse approximation

f ≈ f̂ = ∑
ν∈Nd

0

ĉνΨν, ‖ĉ‖0 = #{ĉν 6= 0} “small”.
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Smoothness ⇒ Exponential best s-term decay

Bρ

Eρ

Re z

Im z

ρ+ρ−1

2

ρ−ρ−1

2

−1 1

The Bernstein ellipse Eρ.

Assume that f is holomorphic (or analytic) in a Bernstein polyellipse
Eρ, where Eρ = Eρ1 × · · · × Eρd ⊂ Cd ,. Then, for s ≥ s̄,

inf
‖ĉ‖0≤s

∥∥∥∥∥∥f − ∑
ν∈Nd

0

ĉνΨν

∥∥∥∥∥∥
L2︸ ︷︷ ︸

best s-term approx. error

. ‖f ‖L∞(Eρ) · exp(−γs1/d ), γ = γ(d , ρ).

This holds for a large class of parametric models: diffusion equation,
harmonic oscillator, heat equation, parametrized domain, ...

[Cohen, DeVore, Schwab, 2010-2011], [Chkifa, Cohen, Schwab, 2015], [Beck, Nobile, Tamellini,
Tempone, 2015], [Cohen, DeVore, 2015], [Tran, Webster, Zhang, 2017]
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Known vs. unknown anisotropy
Issue: Anisotropy of f , i.e., how smooth f is in each variable, might be
unknown (can be measured by ρ).

Sparse polynomial approximation methods:
Known anisotropy

I Interpolation via sparse grids [Zenger, 1991],[Bungartz, Griebel, 2004]

I Quadrature methods (approximate cν =
∫
U f (x)Ψν(x) dx)

I Least-squares approximation

min
p∈Span{Ψν}ν∈S

1
m

m

∑
i=1
|p(y i )− f (y i )|2

Unknown anisotropy

I Greedy (adaptive) methods

I Compressed sensing ← This talk

I Deep learning ← This talk
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High-dimensional approximation via compressed sensing
I Consider a “large enough” ambient set Λ ⊂Nd

0 , |Λ| = N and let

fΛ = ∑
ν∈Λ

cνΨν

I Collect Monte Carlo (MC) samples, i.e. x1, . . . , xm ∈ U i.i.d.
uniform samples, where m� N.

I Let A = ( 1√
m

Ψνj (xi ))
m,N
i ,j=1 ∈ Cm×N , b = ( 1√

m
f (xi ))

m
i=1 ∈ Cm.

I Obtain underdetermined linear system b = AcΛ + e, where

cΛ = (cνj )
N
j=1︸ ︷︷ ︸

coefficients of fΛ

, e =
1√
m
(f (xi )− fΛ(xi )︸ ︷︷ ︸

truncation
error

+ ni︸︷︷︸
more sources

of error

)mi=1

I Let uν = ‖Ψν‖L∞ , solve the Square Root LASSO

ĉ ∈ arg min
z∈CN

‖Az − b‖2 + λ‖z‖1,u, f̂ = ∑
ν∈Λ

ĉνΨν.

[Doostan, Owhadi, 2011], [Mathelin, Gallivan, 2012], [Yang, Karniadakis, 2013], [Rauhut, Ward, 2016],

[Adcock, 2017], [Chkifa, Dexter, Tran, Webster, 2018], [Adcock, SB, Webster, 2018]
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Convergence rates for compressed sensing
Theorem [Adcock, SB, Webster, 2022], [Adcock, SB, Dexter, Moraga, 2021]

Let f be holomorphic in Eρ and set m̃ = cm/(log3(m) log(d)). Let

Λ := ΛHC
d ,s−1 =

{
ν ∈Nd

0 :
d

∏
k=1

(νk + 1) ≤ s

}
be the hyperbolic cross index set of order s = dm̃1/2e. Then,

‖f − f̂ ‖L2 . ‖f ‖L∞(Eρ) · exp(−γm̃1/(2d)) +
1√
m
‖n‖2,

with high probability.
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Key fact: ΛHC
d ,s−1 contains all “lower sets” of cardinality s.
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If you want to know more...

http://sparse-hd-book.ca

http://sparse-hd-book.ca
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DNN Approximation Theory

Generalizations of universal approximation theorems proposed in the
80s by Chibenko, Hornik et al., show that DNNs can efficiently
approximate functions from a wide variety of classes:
I E.g. Hk functions, piecewise smooth functions, bandlimited functions, Barron

functions, cartoon-like functions,...

Review paper [Elbrächter, Perekrestenko, Grohs, Bölcskei, 2021]

For holomorphic functions there exist DNNs (of moderate size and
depth) that achieve the same error bounds as the best s-term polynomial
approximation. [Opschoor, Schwab, Zech, 2019], [Daws, Webster, 2020]
[Adcock, SB, Dexter, Moraga, 2021]

Key questions

1. Can DNNs with suitable approximation properties be obtained via
training? How much data do we need?

2. How does DNN-based approximation compare with polynomial
approximation via CS?
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Practical existence theorem for DNNs

Theorem [Adcock, SB, Dexter, Moraga, 2021]

Let f be holomorphic in Eρ, {xi}mi=1 i.i.d. uniform samples from U and
define m̃ := cm/(log3(m) log(d)). Then, there exist

I a class of ReLU DNNs N whose depth, # of trainable parameters,
and # of nonzero parameters, are at most polynomial in m̃;

I a regularization functional R : N → [0,∞) equal to a certain norm
of the trainable parameters

such that any minimizer

Φ̂ ∈ arg min
Φ∈N

(
1
m

m

∑
i=1
|Φ(xi )− f (xi )|2

)1/2

+ λR(Φ),

satisfies the same exponential convergence rates in m̃ as those for sparse
polynomial approximation via CS with high probability.

Extensions: Hilbert- and Banach-valued settings
[Adcock, SB, Dexter, Moraga, 2022].
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Numerics: parametric diffusion equation
[Adcock, SB, Dexter, Moraga, 2021]

Parametric PDE: d = 30 dimensional parametric diffusion equation on
Ω = [0, 1]2 with “layered” spatial dependence (based on benchmark from
[Nobile, Tempone, Webster, 2008]).

‖ · ‖V = L2(Ω)-norm ‖ · ‖V = H1
0 (Ω)-norm

100 200 300 400 500 600 700

10-3

10-2

10-1

100

100 200 300 400 500 600 700

10-1

100

101

Take home: By careful tuning of the architecture, DNNs can achieve the
similar or better performance than CS.
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Epilogue

I Inspired by Smale’s 18th problem, we have illustrated how ideas
from geometry, approximation, probability, and optimization can
help provide new insights on the mathematical foundations of deep
learning.

I In particular, we have seen results that identify limitations and
potential of deep learning in different contexts: identity effect
classification and high-dimensional approximation.

I We have only scratched the surface, and much more work remains
to be done!
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The roads not taken...

I Rating impossibility with noisy encodings
with Paul Glickman (Concordia)

I Rating impossibility for Graph Neural Networks (GNNs)
with Alessio D’Inverno (University of Siena & MILA) and Mirco Ravanelli
(Concordia & MILA)

I Numerical approximation of high-dimensional PDEs via compressed
sensing and deep learning
with Nick Dexter (FSU) and Weiqi Wang (Concordia)

I Analysis of compressive sensing with deep generative priors
with Aaron Berk (McGill), Babhru Joshi (UBC), Yaniv Plan (UBC),
Matthew Scott (UBC), and Özgür Yilmaz (UBC)

I Sparse recovery and deep algorithm unrolling
with Sina M.-Taheri (Concordia)
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Thank you!

Book
B. Adcock, SB, and C. Webster, Sparse Polynomial
Approximation of High-dimensional Functions, SIAM,
2022
www.sparse-hd-book.ca

Papers

I SB, M. Liu, and P. Tupper, Invariance, encodings, and generalization:
learning identity effects with neural networks. Neural Computation, 34
(8), pp. 1756-1789, 2022

I B. Adcock, SB, N. Dexter, and S. Moraga, Deep neural networks are
effective at learning high-dimensional Hilbert-valued functions from
limited data, Proceedings of Machine Learning Research (PMLR),
MSML21 2021
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Backup slides
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From function approximation to high-dimensional PDEs
Sparsity and Monte Carlo sampling can help solve PDEs on
high-dimensional domains, via compressive spectral Fourier
collocation. [SB, Wang, 2022]

I Under suitable sufficient conditions on diffusion coefficient the curse
of dimensionality can be lessened in the number of collocation
points. Theory is based on random sampling in Bounded Riesz
systems [SB, Dirksen, Jung, Rauhut, 2021]

I Practical existence theorems for DL-based high-dimensional PDE
solvers? (Physics Informed NNs [Lagaris, Likas, Fotiadis, 1998],
[Karniadakis et al., 2021])
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Compressed sensing and deep generative models

Compressed sensing can be used to recover signals in the range of a deep
generative model [Bora, Jalal, Price, Dimakis, 2017]

Goal: Recover x = G (z) ∈ RN from m� N noisy linear measurements
y = Ax + e, where G : Rk → RN is a neural network of depth D.

In [Berk, SB, Joshi, Plan, Scott, Yilmaz,
2022] we provide the first recovery
guarantees for generative compressed
sensing with subsampled isometries based
on a coherence parameter α. We prove that

m & kDnα2

measurements are sufficient for accurate
and stable recovery. Typical coherence
(random weights) is α = O(

√
kD/n)

Lower coherence leads
to better recovery.



31/31

Example: Parametric diffusion equation
Physical variables: z ∈ Ω = (0, 1)2

Subdomains: Ωk ⊂ Ω (circles) , Q ⊂ Ω (square)
Parameters: x ∈ [−1, 1]8

Parametric PDE: For any x ∈ [−1, 1]8, find solution u(·, x) to

{
−∇z · (a(z , x)∇zu(z , x)) = 1Q(z), z ∈ Ω,

u(z , x) = 0, z ∈ ∂Ω,

where a(z , x) = ε +
d

∑
k=1

ck (xk )1Ωk
(z) ≥ ε > 0.

Ω

x1

x2

Ω1 Ω2 Ω3

Ω4 Ω5

Ω6 Ω7 Ω8

Q

Parametric solution map: x 7→ u(·, x)
Quantities of interest:

f (x) =
∫

Ω
u(z , x) dz , f (x) = u(z0, x), . . .
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Proof sketch (Practical existence theorem)
1. Define the class of DNNs

N = {Φ : Rd → R : Φ(x) = zT ΦΛ,δ(x), z ∈ RN}
where
I z are trainable parameters
I ΦΛ,δ = (Φν,δ)ν∈Λ is a ReLU network (with explicit depth and

width bounds) that approximates Legendre polynomials Ψν s.t.
‖Ψν −Φν,δ‖L∞(U ) ≤ δ [Opschoor, Schwab, Zech, 2019]

2. The DNN training program can be interpreted as a SR-LASSO
program. In particular,

ĉ ∈ arg min
z∈CN

‖A′z − b‖2 + λ‖z‖1,

where A′ = ( 1√
m

Φνj ,δ(xi ))ij ≈ A, the CS matrix, if and only if

Φ̂ = ĉT ΦΛ,δ(x),

is a minimizer to the training program.

3. Now, use tools from sparse high-dimensional polynomial
approximation via CS.


